
SoK: Understanding Designs Choices and Pitfalls of Trusted
Execution Environments

Mengyuan Li
lmy@mit.edu

Massachusetts Institute of Technology
Cambridge, Massachusetts, USA

Yuheng Yang
yuhengy@mit.edu

Massachusetts Institute of Technology
Cambridge, Massachusetts, USA

Guoxing Chen
guoxingchen@sjtu.edu.cn

Shanghai Jiao Tong University
Shanghai, China

Mengjia Yan
mengjiay@mit.edu

Massachusetts Institute of Technology
Cambridge, Massachusetts, USA

Yinqian Zhang∗
yinqianz@acm.org

Southern University of Science and
Technology

Shenzhen, China

ABSTRACT
Trusted execution environment (TEE) is a revolutionary technology
that enables secure remote execution (SRE) of cloud workloads on
untrusted server-side computing platforms. Both commercial and
academic TEEs have been proposed in the past few years, including
Intel’s SGX and TDX, AMD’s SEV, ARM’s CCA, IBM’s PEF, and
their academic counterparts built atop open-source RISC-V proces-
sors, such as Keystone, Sanctum, CURE, and Penglai. While great
efforts from both sides have been made in developing a confidential
computing ecosystem, the existence of server-side TEEs with dras-
tically different designs and the presence of various known attacks
have significantly increased the difficulty of understanding TEE
designs and the reasons behind existing attacks.

This paper offers a structured analysis of the design choices of
server-side TEEs, focusing on dissecting TEE designs and identify-
ing their potential pitfalls. We introduce the TEE Runtime Archi-
tectural Framework (TRAF), a detailed framework that facilitates a
thorough and methodical dissection of TEE designs by analyzing
the high-level considerations made by TEE designs. A key aspect
of TRAF’s analysis is the reconfiguration of resource management
in TEE designs, where the host OS used to have full control. By
incorporating the Trusted Computing Base (TCB), TEE designs
adopt different design choices on how to divide and coordinate
tasks between the host OS and TCB to achieve security and effec-
tive management of computational resources. TRAF specifically
investigates how common resources, such as CPU, memory, and
I/O devices, are managed jointly by the TCB and host OS. This
includes a focused study of factors that influence design choices,
such as TCB size, performance, and efficiency. Furthermore, by

∗Yinqian Zhang is affiliated with the Research Institute of Trustworthy Autonomous
Systems and the Department of Computer Science and Engineering of Southern Uni-
versity of Science and Technology (SUSTech).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
AsiaCCS’24, July 01–05, 2024, Singapore
© 2024 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

examining existing vulnerabilities and attacks on TEEs, the paper
further evaluates the security impact of varied design choices.

CCS CONCEPTS
• Security and privacy→ Security in hardware.

KEYWORDS
Trusted Execution Environment, Confidential Computing, Secure
Remote Execution

ACM Reference Format:
Mengyuan Li, Yuheng Yang, Guoxing Chen, Mengjia Yan, and Yinqian
Zhang. 2024. SoK: Understanding Designs Choices and Pitfalls of Trusted
Execution Environments. In Proceedings of ACM ASIA Conference on Com-
puter and Communications Security (AsiaCCS’24). ACM, New York, NY, USA,
17 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
In recent years, the IT industry has seen rapid growth in the cloud
services market. Cloud customers rent computing power, in the
form of execution instances (e.g., VMs and containers) from CSPs
and use the cloud for remote computing tasks. However, traditional
cloudmodels require customers to fully trust CSPs. This trust allows
CSPs to inspect and control user instances, as seen in Figure 1a.
Such a demand for unreserved trust significantly hinders the adop-
tion of cloud services for tasks involving sensitive data, especially
for industries like finance, healthcare, and government.

A promising solution is confidential computing [20], which lever-
ages server-side Trusted Execution Environments (TEEs) to protect
sensitive workloads from untrustworthy CSPs. Enabled by hard-
ware Trusted Computing Base (TCB) components, such as system-
on-chips (SoCs) with memory management units (MMU) and mem-
ory encryption engines (MEE), TEEs provide a highly secure and
isolated execution environment for TEE instances. This protected
environment offers strong confidentiality and integrity guarantees
for TEE instances, safeguarding them from privileged software or
even direct physical attacks on the server. With a cryptographic
root-of-trust (RoT) embedded in the SoC, TEEs also provide mech-
anisms for remote attestation to validate the authenticity of the
hardware and the TEE instances. This advancement in TEE tech-
nology has significantly altered the trust dynamics within public

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

Host OS

Instance

SoC

Instance
Cloud User

CSP

HW Vendor

Other Users

(a) Traditional cloud model.

Cloud User

CSP

HW Vendor

Other Users

Host OS

Instance

SoC

Instance

(b) Cloud model with TEE.

Figure 1: Cloud computation trust relationship comparison.
The red arrows represent unconditional trust that could lead
to potential attacks, while the green arrows represent trust.
clouds, positioning confidential computing as the de facto solution
to protecting “data-in-use” in the cloud (as shown in Figure 1b).

Given the great benefits offered by TEEs, recent years have wit-
nessed an increasing number of TEE production systems by major
chip vendors, including Intel, AMD, and ARM, as well as academic
TEE design proposals with open-source prototypes on RISC-V sys-
tems. These TEE designs vary in multiple aspects, including per-
formance overhead, security properties, and programmability (i.e.,
easy to use). Despite being popular, TEEs have exhibited another
concerning trend, with an increasing number of software and hard-
ware attacks frequently catching the spotlight. We think that, with
the thriving research efforts on TEE designs, the community could
benefit significantly from the systematization of these efforts, which
can help provide a big picture of the diverse TEE design landscape
and identify promising research problems.

However, deriving a systematic view of the diverse TEE research
landscape is challenging. A primary difficulty is that, given the abun-
dance of TEE designs, characterized by their diversity in design and
implementations, understanding the intricate details and underly-
ing considerations of these complex but distinct designs can be a
real challenge, especially for new researchers in the domain. More-
over, not all design choices and implementation details are equally
important. A desired systematization should help people to grasp
the architecture-level motivations that drive TEE design choices
and logically reason about the trade-offs behind these choices. Thus,
this paper provides a TEE deconstruction framework which focuses
on the fundamental challenge of TEE designs:
How TEE design can safeguard resources used by TEE instances
while also enabling an untrusted Operating System (OS) to manage
computing resources in an effective way for CSP’s responsibilities.

By breaking down TEE designs from the perspective of resource
management tasks of the OS, the framework thus provides a system-
atic and structured methodology to understand the complexities of
TEE designs from a top-down approach.
TEE Runtime Architectural Framework (TRAF). TEE Runtime
Architectural Framework is designed to assist newcomers to gain a
comprehensive understanding of an unfamiliar TEE design. TRAF
offers a structural approach based on common events and tasks (e.g.,
CPU scheduling, memory management, etc.) in the OS, breaking
down a complex TEE design into how the TEE design considers dif-
ferent events and resource management. For different events, a TEE
design can choose to take direct control of the events or delegate
them to the untrusted host OS for handling. TRAF classifies critical
system management events into four modes. The four modes em-
phasize the coordinating relationship between the TEE instance, the

untrusted privileged OS, and the trusted protection measures intro-
duced by TEE (components within TCB). The adoption of different
modes reflect an architectural overview of TEE design choices and
is due to different trade-offs, such as security, performance, and
efficiency. Through this high-level analysis, researchers can swiftly
grasp the emphasis of TEE designs. Consequently, they can quickly
gain a rough understanding of the general considerations and select
specific areas of interest for further in-depth research. Furthermore,
we hope that this deconstruction model will motivate researchers
to systematically consider the security of TEE designs from the
perspective of the impact of different OS events on TEE design.

The contributions of this work are summarized below:
• This paper introduces TRAF, a structured framework designed
to dissect TEE designs and analyze the division and coordination
of resource management tasks between the Trusted Computing
Base (TCB) and the host OS.
• This paper leverages TRAF to perform an in-depth analysis of
the high-level design choices governing how TEE designs handle
common runtime tasks. The analysis reveals that most existing
TEE designs exhibit similar design choices for most tasks. This
paper also discusses implications stemming from design choices,
including their impact on security, TCB size, and performance.
• This paper categorizes known attacks targeting TEEs and delves
into a case study concerning the reasons behind existing attacks on
AMD SEV and the corresponding countermeasures. It highlights
that attacks stemming from TEE design flaws often result from
certain resources still being managed by the untrusted host OS in
some corner cases, where they lack adequate protection.

2 TEE IN A NUTSHELL
In this section, we first provide essential background information
about TEEs. In addition, we provide an overview of a generalized
TEE lifecycle, which mainly involves remote attestation and run-
time protection.

2.1 Scope of Investigation
In this paper, we focus our attention on hardware-based server-side
(a.k.a., cloud) TEEs in general-purpose processors that support a
secure remote execution (SRE) feature [80]. A TEE is considered
hardware-based if hardware-backed techniques are used to pro-
vide the security guarantees of TEE instances running inside the
protected environment [19]. SRE refers to a security feature that
enables a secure execution of applications on remote, untrusted
platforms. Specifically, a TEE design with the SRE feature must
have the following security properties [80]: (1) Secure Measurement:
It should provide a measurement of the underlying hardware plat-
form and the initial states of the TEE instance that could be used for
remote attestation; (2) Confidentiality: It should keep the inner data
of the TEE instances confidential against software and physical
(optional) adversaries; (3) Integrity: It should prevent unauthorized
tempering of the code and data of the TEE instances.

Not included in our study are TEEs that do not support SRE or
those implemented purely in software. For instance, TrustZone [6]
is a well-known TEE that has been available on ARM processors
for over fifteen years. However, as it does not by design for cloud

platform and does not support secure measurement to allow re-
mote users to verify the initial states of the TEE instances, we
exclude TrustZone from our investigation. Also excluded are TEEs
implemented entirely in software, such as Amazon AWS Nitro
enclave [8] and Ant Group’s HyperEnclave [42]. Software exten-
sions of hardware-based TEEs like vSGX [102], Twinvisor [51] and
Colony [97] are also excluded in this paper, because their security
guarantees are built atop the underlying TEEs. In addition, we only
focus on major server-level processor platforms, including Intel,
AMD, ARM, and RISC-V. Embedded TEE designs are excluded from
the scope of this paper due to their different use scenarios and
diverse design considerations.

2.2 TEE Threat Model

Threat models. The adversary that a TEE design typically con-
siders has the power of controlling the entire software stack of
the underlying computing platform. Specifically, it is assumed that
the adversary is able to (1) execute arbitrary instructions at the
privileged levels; (2) launch, pause, and destroy TEE instances at
his will; and (3) manage the software stack in the non-TEE world,
including memory mapping, I/O devices, and CPU scheduling. In
addition, many TEE designs also assume that the adversary could
gain physical access to the computing devices [5, 29, 36, 44, 49, 83].
In the presence of a physical adversary, peripheral hardware com-
ponents outside the SoC are considered untrusted, as they can be
compromised via a variety of physical attacks, such as cold-boot
attacks [31] and bus-snooping attacks [64]. However, attacks tar-
geting availability, another key component of the CIA triad [72],
are generally not considered within the threat model of commer-
cial TEEs. This is because the computing platform, including both
hardware and software, is managed by a potentially adversarial
party. Terminating or crashing the TEE instance is the least an
adversary could do. Consequently, Denial-of-Service (DoS) attacks
are excluded in TEE’s threat model. Moreover, microarchitectural
side-channel attacks are also typically excluded from the threat
model commercial TEEs [3, 5, 22, 36].
Trusted computing base (TCB). The TCB of TEEs includes all
hardware and software components that are considered trusted
and are involved in the establishment of TEE’s security foundation.
Specifically, the TCB of TEEs can be further classified as Manufac-
turer TCB and ISV TCB. Manufacturer TCB includes both hardware
and software components that are provided by the TEE manufac-
turer. For instance, in Intel SGX [22], Manufacturer TCB includes
manufacturer-provided hardware components, such as Instruction
Set Architecture (ISA), hardware-based memory encryption engine,
microcode-based MMU extension, and also software-based architec-
tural enclaves (e.g., Quoting Enclave and Provisioning Enclave). ISV
is short for Independent Software Vendor, which is the term coined
by Intel to refer to software developers that utilize TEEs to build ap-
plications. ISV TCB, therefore, includes the software running inside
the TEE-protected execution environment (e.g., processes running
inside enclaves or confidential VMs). Note that even though vul-
nerabilities inside the ISV TCB may lead to various attacks (e.g.,
memory safety attacks [18] and thread safety attacks [91]), vulnera-
bilities within ISV TCB are usually out of the scope of a TEE design,
as it is the ISV’s responsibility to ensure a bug-free ISV TCB.

TEE
Executable

Verifiable
Initial States

Runtime TEE
Instance

Delete TEE
Instance

Remote Attestation

Runtime Management

(§III)

(§IV, §V)
Figure 2: Generalized TEE lifecycle.

TCB size is a common factor used to reflect the security of a
TEE design. Generally speaking, a smaller TCB size indicates fewer
lines of code or hardware implementations, which in turn suggests
a reduced likelihood of vulnerabilities. However, comparing the
security of two TEE designs based on the TCB size is difficult, even
between VM-based TEE (e.g., AMD SEV) and process-based TEE
(e.g., Intel SGX). For example, it is generally assumed that the ISV
TCB of a VM-based TEE is larger than that of a process-based TEE.
However, as we see more research efforts to build smaller TEE
OS with memory safe programming languages (e.g., Rust), it is
unreasonable to draw such a conclusion. Regarding the Manufac-
turer TCB, as VM-based TEEs generally need to handle VM-specific
events (such as privileged instructions or I/O), their Manufacturer
TCB may be larger or more complex. However, it is still hard to
directly compare the Manufacturer TCB size between two TEE
designs, as most commercial TEEs are closed-sourced.

2.3 Generalized TEE Lifecycle
As shown in Figure 2, TEE designs and the lifecycle primarily in-
volve two parts: remote attestation and runtime management.
• Remote attestation. Remote attestation generates a verifiable
report detailing the initial states of the TEE instance, such that
a remote user could verify the authenticity and integrity of both
the Manufacturer TCB (the execution environment) and ISV TCB
(the TEE software). The initial states consist of a cryptographic
hash of the deployed software binary, as well as the configuration
of the TEE’s hardware and software. Most TEEs follow a similar
remote attestation procedure to generate the attestation report
with assistance from the Manufacturer TCB.
• Runtime management. Starting with verified initial states, in
runtime management, TEE designs primarily focus on two aspects:
efficient resource management and security. In terms of efficient
resource management, TEE designs must align with the resource
management requirements of CSPs. This ensures efficient admin-
istration of server resources, including CPU, memory, and I/O
devices, which are utilized by both TEE instances and non-TEE
components during runtime. In terms of security, TEE designs
must protect the confidentiality and the integrity of TEE instances
under TEE threat model (Section 2.2).
Most TEE designs typically follow similar steps in Remote Attes-

tation. Therefore, we briefly summarize the steps for performing
remote attestation and verifying the initial states of TEE instances
in Section 3. However, approaches to runtime management and
protection vary more broadly across TEE designs. Hence, this pa-
per mainly focuses on how different TEE designs coordinate the
TCB with the untrusted host OS to provide secure and effective
runtime management. In Section 4 and Section 5, we will present a

systematic framework to analyze how cloud TEE designs achieve
runtime management.

3 REMOTE ATTESTATION
In this section, we briefly introduce howmost TEE follows a general
remote attestation procedure to ensure verifiable TEE initial states.

3.1 General Remote Attestation Procedures
Most TEEs follow the same remote attestation procedure:
Step1. The TEE instance itself or the TEE instance’s owner (the

entity the loads the TEE instance) initiates a remote attesta-
tion request to a trusted attestation supervisor. The trusted
attestation supervisor is usually within the Manufacturer
TCB, which can be the underlying hardware, a secure co-
processor or a privileged TEE instance released by the TEE
manufacturer;

Step2. The attestation supervisor generates and signs a verifiable
attestation report. This report includes critical information
about the TEE instance, such as a secure measurement of its
initial states, platform details, and configurations;

Step3. TEE instance users then verify the attestation report before
transmitting any secret data to the TEE instance.

The key technical components of remote attestation include (1)
a chain of trust, employed to authenticate the trustworthiness of
both the attestation report and the attestation supervisor, and (2)
The establishment of a secure measurement mechanism capable of
accurately representing the initial states of TEE instances.

3.2 Chain of Trust
The root of trust is usually a root signing key owned by the TEE
manufacturer. The manufacturer provisions a specific key, named
attestation key, to each TEE SoC and uses the root signing key
to endorse this attestation key. The attestation key is then used
by an attestation supervisor to sign attestation requests from TEE
instances. The attestation supervisor can vary according to different
TEE design, but is usually within the Manufacturer TCB. Common
attestation supervisors could be (1) the TEE hardware, or (2) a
privileged TEE instance provided by the manufacturer. Compared
with implementing the signature algorithm in hardware, leveraging
software-based implementation (i.e., a privileged TEE instance)
enables more advanced signature algorithms (e.g., EPID adopted
by Intel SGX could protect the privacy of the TEE platforms). On
the downside, the privileged TEE instance becomes a naturally
target of the adversary, which might have a larger attack face. For
example, several speculative-execution attacks targeting the Intel’s
privileged enclave (i.e., Quoting Enclave) have successfully obtained
the attestation key [16, 81], thus breaking the security guarantees.

After obtaining the signed attestation report, verifiers require
the corresponding verification key for the attestation key to verify
the report. When the manufacturer opts not to make verification
keys public, or to release them to limited third parties (e.g., cloud
providers or data centers), the manufacturer or the third parties
need to run some attestation service to perform the verification
on behalf of the TEE user. Consequently, in such cases, TEE users
must place additional trust in the attestation service. Once the
verification process is successfully completed, TEE users can use

the public key provided by the TEE instance, which is included
in the attestation report, to establish a secure channel with the
TEE instance. Through this secure channel, TEE users can securely
provision data or delegate computation tasks to the TEE instance.
3.3 Secure Measurement
Secure measurement aims to deterministically generate a fix-length
measurement from the content of the TEE to identify the TEE
instance. Existing TEE designs [9, 23, 33] usually use the cryp-
tographic hash of the initial content of the TEE instance as the
measurement. It is usually assumed that the TEE user knows the
initial content of the TEE instance in advance so that she could
derive an expected value of the measurement. As long as the mea-
surement of a communicating TEE instance matches the expected
value, the TEE user is convinced that the TEE instance runs the
expected software. As for the initial content, process-based TEEs
usually measure the initial code and data of the applications while
VM-based TEEs usually measure a secure BIOS which is the first
piece of software loaded into the VM and rely on the BIOS to check
the trustworthiness of the OS and applications loaded later.

The security of the measurement lies in that the adversary could
not launch two TEE instances with different contents (e.g., one
malicious TEE instance and one victim TEE instance) but the same
measurement. By using cryptographic hash functions, it is negligi-
ble that the adversary could find two different messages resulting
in the same hash value. Hence, the key point here is that the attes-
tation supervisor needs to ensure that all necessary information
about the TEE instance’s content (e.g., virtual addresses, access
permissions) is properly measured, and overdue data copies in
micro-architectures are emptied. Otherwise, potential attacks could
be launched to bypass the remote attestation. For example, Wilke et
al. [96] discovered that AMD SEV-ES does not properly measure
the virtual addresses of the secure BIOS code to be loaded into the
VM, and thus could manipulate the layout of the secure BIOS with-
out changing the measurement. The manipulated BIOS could then
launch arbitrary malicious code and bypass the remote attestation.

4 TEE RUNTIME ARCHITECTURAL
FRAMEWORK

In the rest of the paper, we mainly focus on the analysis of TEE’s
runtime management and protection. This section aims to provide
a systematic framework for deconstructing TEE designs.

4.1 TRAF Overview
TEE Runtime Architectural Framework (TRAF) deconstructs a TEE
design by taking advantage of the classification of common events
and tasks from the perspective of operating system (OS). TRAF
specifically concentrates on the events that frequently occur in
cloud TEE runtime, a.k.a., runtime management tasks (as shown
in Figure 3), and further extends the analysis to assess how TEE
designs safeguard these events.

Specifically, TEE designs revolve around the dual goals of effi-
cient resource management and security in TEE runtime, while aim-
ing to avoid excessive TCB expansion. Rather than incorporating
the entire OS stack (e.g., the CPU scheduler, page table management,
and I/O drivers) into the TCB, TEE designs must also align with the
resource management requirements from the untrustworthy CSP

I/O Device

I/O
Transmission

I/O Operations

Virtual
Address

Memory
Allocation

Page
Fault

Context
Switch

IRQ/ INS
Emulation

CPU
Scheduling

Memory

Host OS

Page
Table

Shared MemProtected Mem

I/O DataRegister
Backup

Physical
Address

TEE Instance

CPU

CPU ManagementMemory Management I/O Management

Figure 3: Common events and resource management tasks
(CPU, memory, and I/O) for TEE instances.

(a.k.a. host OS). This results in the design challenges that the TEE
runtime is managed through coordination between the untrusted
host OS and the Manufacturer TCB. How common runtime man-
agement tasks are split between the two leads to distinct high-level
design choices, which are chosen by various TEE designs.

TRAF first categorizes high-level design choices into four modes
in Section 4.2, where each mode indicates whether and how a TEE
design takes care of the event. We then show how each TEE de-
sign chooses from these modes for different runtime tasks, in-
cluding CPU virtualization (Section 4.3), memory management
(Section 4.4), and peripheral resource management (Section 4.5),
as what is usually covered in an OS textbook [7]. A timeline
view of how design choices evolve over time is presented to help
show the trend in Figure 5.

4.2 High-level Design Choices
To what extent does a TEE design still delegates the ability of man-
aging runtime resources to privileged software is a crucial factor in
server-side TEE designs. Specifically, to secure TEE instances, TEEs
perform some runtime management tasks inside their Manufac-
turer TCB. These tasks can be conducted by extra SoC components
(e.g., AMD secure co-processor [3]), CPU extensions (e.g., Intel TDX
ISA [36]), or software components (e.g., Intel TDX module [36] and
SGX quoting enclaves [22]). We coin a term TEE Runtime Protection
Module (RTPM for short) to refer to these Manufacturer TCB com-
ponents that involve secure runtime management. In a TEE design,
the RTPM performs resource management in collaboration with
the privileged but untrusted host OS in one of the four modes:
Unprotected mode. As depicted in Figure 4(a), in the unprotected
mode, the privileged software manages the runtime resources di-
rectly, and the TEE design fully leverage the untrusted software
for resource management. When choosing this mode, privileged
software directly manages the hardware resources allocated to the
TEE instances. One example is about scheduling CPU resources to
TEE instances such as setting up CPU affinity. Note that ISV TCB
may play a role in introspection or attack detection in some cases.
However, this is possibly the behavior of the ISV itself. Therefore, it
should also be attributed to unprotected mode if the Manufacturer
TCB does not participate. An example is instruction emulation on
SEV environment, where the guest VM (ISV TCB) may additional
check the instruction return value in some scenarios.

Privileged
SWRTPM

Runtime Resources

Privileged SW

RTPM

Runtime Resources

Privileged SW

Runtime Resources

TEE InstanceTEE Instance

TEE Instance

Privileged
SW

Runtime Resources

TEE Instance

Privileged
SW

Runtime Resources

TEE Instance

Privileged SW

Runtime Resources

TEE Instance

RTPM

(a) Unprotected mode.

Privileged
SWRTPM

Runtime Resources

Privileged SW

RTPM

Runtime Resources

Privileged SW

Runtime Resources

TEE InstanceTEE Instance

TEE Instance

Privileged
SW

Runtime Resources

TEE Instance

Privileged
SW

Runtime Resources

TEE Instance

Privileged SW

Runtime Resources

TEE Instance

RTPM

(b) RTPM-only mode.

Privileged
SWRTPM

Runtime Resources

Privileged SW

RTPM

Runtime Resources

Privileged SW

Runtime Resources

TEE InstanceTEE Instance

TEE Instance

Privileged
SW

Runtime Resources

TEE Instance

Privileged
SW

Runtime Resources

TEE Instance

Privileged SW

Runtime Resources

TEE Instance

RTPM

(c) RTPM-guarded mode.

Privileged
SWRTPM

Runtime Resources

Privileged SW

RTPM

Runtime Resources

Privileged SW

Runtime Resources

TEE InstanceTEE Instance

TEE Instance

Privileged
SW

Runtime Resources

TEE Instance

Privileged
SW

Runtime Resources

TEE Instance

Privileged SW

Runtime Resources

TEE Instance

RTPM

(d) Instance-assisted mode.

Figure 4: Four modes for TEE runtime management. (a) Untrusted
privileged OS fully manages runtime resources; (b) RTPM fully man-
ages runtime resources; (c) Untrusted privileged OS configures run-
time resources and RTPM performs additional security checks; (d)
TEE instance itself performs runtime resource management.

RTPM-only mode. As shown in Figure 4(b), in RTPM-only mode,
the interactions between the TEE instance and its associated run-
time resources are exclusively managed by the RTPM and the priv-
ileged software only handles resources for other non-TEE compo-
nents. TEE designs may opt for RTPM-only mode when handling
security-critical but simple runtime management tasks, such as
context switches where registers are securely saved and restored
by the RTPM. However, performing complex tasks with this mode
may significant increase the size of RTPM and thus the TCB size.
RTPM-guarded mode. Figure 4(c) illustrates the RTPM-guarded
mode. In this mode, runtime management tasks are coordinated
between the privileged software and the RTPM, usually with the
former handling resourcemanagement and the latter focusing on se-
curity validation. The RTPM-guarded mode is an appealing design
choice for complex runtime management tasks, such as memory
management. For example, in AMD SEV-SNP, the privileged soft-
ware performs nested page table maintenance and fault handling,
where as the RTPM validates proper configuration of memory en-
cryption key or isolation.
TEE Instance-assistedmode. Figure 4(d) describes the TEE instance-
assisted mode, where the TEE instance itself needs to directly ma-
nipulate some runtime resources. Without the RTPM or untrusted
host OS working as the agent for the TEE instance, the instance has
to perform part of the management task itself. Different from the
previous two modes, the instance-assisted mode does not offer the
transparency of global runtime resources to the TEE instance and
can hurt the usability of the system. Therefore, very few TEE de-
signs take this approach for physical resources. One such example
is that Keystone lets the TEE instance itself handle page faults.

4.3 CPU Virtualization
CPU virtualization provides an abstraction of the CPU resources to
TEE instances. We focus mainly on events that involve interaction
between TEE instances and the untrusted host, including CPU

scheduling, context switch, and interrupt and instruction emulation
(for VM-based TEE).

4.3.1 CPU Scheduling. In a multiprogramming system, CPU sched-
uling selects among idle processes and decides the next process to
occupy the CPU core. The privileged software in charge of making
such decisions is called the CPU scheduler. Similarly, TEE instances
are also managed as processes/VMs and share CPU resources with
non-TEE components. Most TEEs exclude the CPU scheduler from
the RTPM and adopt the unprotected mode for CPU scheduling,
where the scheduling decision is made solely by the scheduler in the
untrusted OS. This choice is motivated by two key reasons: (1) CSP
require the ability to efficiently manage and determine the schedul-
ing of TEE instances according to their specific needs and policies.
Adopting a RTPM-guarded mode in CPU scheduling may introduce
significant performance degradation. (2) Due to the complexity of
CPU scheduling, placing the functionality of a CPU scheduler into
the RTPM will significantly increase the TCB size [11].

Scheduling algorithms that could be applied in a scheduler, such
as Round Robin (RR) or Completely Fair Scheduling (CFS) used in
Linux, are also chosen at the need of CSPs. The scheduler relies on
interrupts (e.g., timer interrupts and I/O interrupts) to force con-
text switches between processes. Thus, the choice of unprotected
mode for CPU scheduler leverages the untrusted OS the ability to
interrupt a TEE instance at his will, which may result in interrupt-
based controlled-channel attacks, as discussed in the implications
of design choices (Section 5).

Observation: Most TEEs adopt the unprotected mode for
CPU scheduling to enable efficient resource management by
CSPs and reduce their TCB size.

4.3.2 Context Switch. During context switches, the registers used
to represent the context of a TEE is saved to the memory. To protect
the integrity and confidentiality of the register values, most TEEs
adopt the RTPM-only mode for context switch. For example, in
the legacy AMD virtualization architecture, the hypervisor assists
the saving and restoring of some registers of a VM [43]. In AMD
SEV-SNP, however, the entire procedure is merged together as
single atomic hardware instructions (VMRUN abd VMEXIT), and the
register values are stored in an RTPM-protectedmemory region. For
TEEs based on open-sourced RISC-V, the trusted secure monitor
running in the machine mode traps and takes over the context-
switch procedure to ensure its confidentiality and integrity.

Besides updating register values, RTPM may optionally clean
data stored in some microarchitectures (e.g., TLB and cache) dur-
ing context switch. For example, a complete TLB flush is usually
required during the context switch to avoid reusing TLB entries
of other processes. Some TEEs (e.g. Intel SGX) may also explicitly
and partially flush cache as well to prevent speculative execution
attacks [92] and cache side-channel attacks. RTPM in some TEEs
(e.g., Keystone and Penglai) choose to physically partition cache
ways and switch cache ways during context switch to prevent cache
side-channel. For performance concerns, some TEEs (e.g. AMD SEV
and Intel TDX) tag TLB entries with a security domain label and
switch this label during context-switch to avoid the total TLB flush.
To do so, RTPM uses an identifier of the current executor to label

each TLB entry. With such a TLB tag, the TLB entries left by the
previous domains will not pollute each other.

Observation:Most TEEs choose the RTPM-only mode for
context switch. AMD SEV is an exception as it follows the un-
protected mode, but the subsequent SEV-ES/SEV-SNP switch
to the RTPM-only mode.

4.3.3 Interrupt and Instruction Emulation. In VM-based TEE, in-
ternal interrupts and exceptions work in an emulated way, which
can be achieved by emulating the states of APIC-related MSR in
the VM control block. Some TEE designs don’t provide additional
protection for all interrupts and exceptions, such as AMD SEV,
which still uses the interrupt and exception mechanism used in
non-TEE virtualization environment. This means that the host can
arbitrarily interrupt the VM directly, and when an exception occurs,
it is the responsibility of the host to handle or redirect it. Some TEE
designs use the RTPM-guarded mode, such as Intel TDX and IBM
PEF, which leverage RTPM to trap, handle some security-related
interrupts and exceptions.

Similarly, certain instructions related to the physical state, such
as CPUID, RDMSR, RDTSCP, etc., require emulation in an virtualized
environment. In the traditional non-TEE virtualization environ-
ment, these instructions are emulated by triggering VMEXITs, and
letting the hypervisor update the corresponding registers. VM-
based TEEs, including AMD SEV, SEV-ES, and SEV-SNP, inherit
similar mechanisms (unprotected mode), where the VM or RTPM
directly exposes the registers associated with the instructions to
the host. The host then provides the simulated results and passes
them directly to the VM. The reports of AMD SEV-SNP [3] intro-
duced that a malicious host can induce a VM to use a vulnerable
cryptographic implementation, or cause different VM behaviors,
by providing incorrect CPUID return values, which is a significant
violation of the integrity of the TEE execution flow. Although the
VM can add additional checks internally to roughly check the re-
turn values, the Manufacturer TCB does not play a supervisory role
throughout the process.

Observation: For VM-based TEEs, instruction emulation
and interrupt emulation are essential in existing virtualiza-
tion technologies. However, since the untrusted hypervisor
must be involved, TEEs usually operate in unprotected mode
or RTPM-guarded mode.

4.4 Memory Management
Memory management aims to optimize the utilization of physi-
cal memory and provide isolation of the memory used by differ-
ent processes. Three key elements are essential in most modern
OS for memory management: the management of virtual memory
(Section 4.4.1), the allocation of physical memory (Section 4.4.2),
and the handling of page faults (Section 4.4.3). In addition, we in-
clude a discussion of memory encryption (Section 4.4.4), which is
widely used to protect TEE’s memory against physical attacks. We
exclude the discussion of internal memory management of VM-
based TEEs, as it is usually completely managed by the VM itself.

CPU Virtualization
CPU

Scheduling
Context
Switch

Virtual Address
Space

Memory
Allocation

Page Fault
Handling

Memory Management

RTPM-only mode
 Unprotected mode

 RTPM-guarded mode
 Instance-assisted mode

2015

2016

2017

2018

2019

2020

2021

2022Year

Input and Output
Data

Transmission
I/O

Operations

-
-

-
-Intel SGX [22]

RISC-V Sanctum [23]
AMD SEV [44]

AMD SEV-ES [43]
RISC-V Keystone [50]
RISC-V Penglai [29]
AMD SEV-SNP [4]

Intel TDX [37]
IBM PEF [34]
ARM CCA [5]

RISC-V CURE [9]

Interrupt
Emulation

Instruction
Emulation

-
-

-
-

-
-

-

-

-

-

Figure 5: Design choices used in representative TEEs. The bug symbol indicates there exists known attacks.

4.4.1 Virtual Memory Management. Virtual memory here refers
to the address space seen directly by the TEE instances. In process-
based TEEs, this is the virtual address space of the hosting process of
the TEE instance; in VM-based TEEs, this refers to the guest physical
address used by the VM (which is later translated to system physical
address used by the main memory through a nested page table). In
either case, the TEE virtual memory is managed in the instance-
assisted mode. For example, VM-based TEEs allow the TEE instance
to create page tables inside the TEE and add another indirection
layer of virtual memory by itself. Process-based TEEs may not be
allowed to create their own page tables inside the TEE, but TEE
designs usually do not restrict TEE instances from arranging their
private virtual address layout.

Observation:Most TEEs adopt the instance-assisted mode
for virtual memory management.

4.4.2 Physical Memory Allocation (Access Control). Memory allo-
cation allocates a set of physical addresses for TEE instances and
initiates their mapping with virtual addresses. Memory allocation
can take places statically when launching the TEE instances or dy-
namically via demand paging [29]. Most TEEs using RTPM-guarded
mode for memory allocation follow two steps: (1) The untrusted
OS first selects free physical pages from the main memory, option-
ally inside a region reserved for TEE, and (2) the RTPM performs
additional checks to ensure security (a.k.a., access control).

The mapping information (between the address space seen by
the TEE instances and the system physical memory address space)
needs to be guarded by the RTPM to ensure that private physical
pages owned by a TEE instance are never mistakenly shared with
others. Different TEEs choose different mechanisms to implement
such security guarantee. For example, some TEEs (e.g., AMD SEV-
SNP, Intel TDX, Keystone) choose to perform ownership checks at
the end of an address translation, such that the access permission
check can be performed before the mapping information is cached
into the TLB. Others perform such checking when initializing the
page tables. For example, the secure monitor in RISC-V Penglai
ensures the correctness of all page tables when updating page
tables and therefore can omit access permission checks during page
table walks. By ensuring no unauthorized individuals could have an

illegal page table entry (e.g., untrusted host has a mapping pointing
to an enclave), Penglai provides access control with the help of
strict memory allocation check.

The way in which the RTPM provides such check may also be
different. For example, Intel SGX and AMD SEV-SNP rely on some
metadata records (Enclave Page Cache Map (EPCM) for Intel SGX,
and Reverse Map Table (RMP) for AMD SEV-SNP) to check the
correctness of memory allocation and the permission of a memory
access. However, AMD SEV and SEV-ES relies on indirect checks
enabled by memory encryption to guard memory allocation and
access (e.g., an attacker cannot get the plaintext of other TEE in-
stance’s memory because the attacker will be forced by RTPM to
use a wrong key for the decryption [53]).

Observation:Most TEEs adopt the RTPM-guarded mode for
physical page allocation, which enforces security validations
before memory accesses (either during page table update or
address translation).

4.4.3 Page Fault Handling. The page table entries (PTEs) inside
system-level page tables (i.e., nested page tables for VM-based TEEs
and page tables for process-based TEEs) that translate the virtual
memory address to the system physical memory address play a
critical role in regulating page fault exceptions. Existing TEE de-
signs diverge in their choices of protecting page fault handling,
with multiple modes being adopted. These protection mechanisms
must ensure that memory allocation information remains uncom-
promised during fault handling to prevent malicious tampering.
RTPM-guarded mode. Some TEEs (e.g., AMD SEV-SNP and Intel
SGX) rely on untrusted privileged software to maintain the system-
level page tables, but the RTPM performs permission checking at
runtime to ensure the memory mapping information is still correct
(e.g., after page fault handling and page table walks). Using the
RTPM-guarded mode can reduce the workload and TCB size of the
RTPM, but as RTPM does not prevent the host from setting/un-
setting the present bit of the PTEs, it opens up attack vectors for
controlled-channel attacks (as discussed in Section 5.1).
RTPM-onlymode. Some TEEs (e.g., Intel TDX and RISC-V Penglai)
choose tomanagememorymapping in the RTPM-onlymode, where
the memory regions of page tables are only writable by the RTPM

and page faults are also handled by the RTPM. The main differ-
ence between the RTPM-guarded mode and the RTPM-only mode
is whether the untrusted OS is allowed to update the page table
directly during runtime. Note that ARM CCA and Intel TDX have
a separate nested page table maintained for VM’s shared memory
region, which is protected in the RTPM-guarded mode. Thus, ARM
CCA and Intel TDX can also be categorized as a hybrid mode.
TEE instance-assisted mode. Some TEEs assign the task of main-
taining the page tables to the TEE instance. For example, TEE
instances in Keystone and CURE have their own runtime system,
which maintains its own page table and handles its page faults.
Although an ownership check will eventually be performed by the
RTPM before a memory address is accessed, we regard this type
as instance-assisted mode as the TEE instance has the ability to
directly configure physical memory. TEE instance-assisted mode
can also mitigate exception-based controlled-channel attacks.

Observation: TEEs choose different modes for handling
page faults, leading to varying security implications.

4.4.4 Memory encryption. When a physical attacker is also con-
sidered in the TEE threat model, all hardware devices other than
SoC are not trusted. Thus, memory encryption seems to be the
only way to protect data stored in the physical memory. When
memory encryption is enabled, the RTPM includes either a soft-
ware or hardware memory encryption engine (MEE) responsible for
encrypting outbound data from the SoC and decrypting inbound
data. The memory encryption keys are supposed to be managed
and accessible only by RTPM, ensuring their security against any
attackers during their lifecycle.

Unlike TEE designs with small memory sizes that prioritize mem-
ory encryption integrity and offer freshness support (e.g., RISC-V
Keystone and Intel SGX v1), most TEE designs supporting larger
memory sizes tend to either remove such protections (e.g., AMD
SEV, Intel TDX, and Intel SGX v2) or make them optional (e.g., ARM
CCA). This is primarily driven by the substantial performance over-
head associated with maintaining integrity or freshness metadata,
leading many designs to forego integrity protection, which may
introduce potential risks of memory replay attacks.
4.5 I/O Management
I/O are necessary for TEE instances to store data persistently or
to transmit data with an external party. Process-based TEEs have
data transmission with the non-TEE world through shared memory.
VM-based TEEs also perform I/O operations (e.g., I/O instructions,
or DMA) with virtual I/O devices through shared memory.

Most existing VM-based and process-based TEE designs choose
the unprotected mode for I/O traffic, allowing the privileged soft-
ware to intercept or manipulate the I/O traffic. For instance, In-
tel SGX SDK allows enclaves to perform data transmission using
OCalls (i.e., temporarily exit the enclave to call an outside function),
which are handled by untrusted software. VM-based TEEs, such
as AMD SEV, ARM CCA, and Intel TDX, support I/O operations
using software-emulated I/O devices. When memory encryption is
enabled, emulated I/O devices cannot directly access VM’s private
memory. Thus, a shared memory region is used to simulate Di-
rect Memory Access (DMA) operations. To support programmable

I/O instructions (PIO), the TEE OS, like the Linux kernel adapted
for AMD SEV-ES, uses a special handler to trap privileged I/O
instructions, place the I/O data into a shared region, and trigger
an on-demand context switch to the hypervisor to complete the
emulation of the I/O instruction.

Observation: Most TEE designs utilize the unprotected
mode for I/O data transmission and I/O operations. The confi-
dentiality and integrity of I/O operations is protected through
encryption in the application layer.

Towards trusted I/O. Under the unprotected mode, the confi-
dentiality and integrity of TEE’s I/O operations solely relies on
software-based encryption mechanisms (e.g., TLS/SSL for network
communication and full-disk encryption for disk I/O), which could
introduce non-negligible performance overhead. To reduce such
performance overhead, Intel recently introduced a white paper on
hardware-supported trusted I/O for TDX v2.0 [38]. Specifically, I/O
devices themselves need to include a trustworthy logic unit (e.g.,
Device Security Manager in TDX 2.0), which is responsible for build-
ing a secure channel between TEE instances and I/O devices. The
I/O traffic between I/O devices and the TEE instances are encrypted
and integrity protected, which can be enabled by Integrity & Data
Encryption feature in PCIe 5.0 standard [39]. The I/O devices needs
to support features like Single Root I/O virtualization (SR-IOV) to
ensure one-to-one mapping between TEE instances and I/O devices
or virtual I/O functions [38].

5 UNDERSTANDING TEE DESIGNS USING
TRAF

The results in Figure 5 indicate that TEE designs exhibit similar
trends and considerations (a.k.a., design choices) in most tasks.
However, divergences also arise among different TEEs in certain
tasks, such as page fault handling and instruction emulation. In
this section, we will delve into the potential implications that arise
from the selection of different protection modes.

5.1 Implications of Design Choices
Different mode choices will bring implications for security, TCB
size, and performance, which are enumerated as below:
• Unprotected mode. Choosing unprotected mode can lead to the
corresponding task or resources being completely traceable or
controlled by the untrusted host. However, due to CSPs’ require-
ments for global resource management, most cloud TEEs allow
the untrusted OS to handle these resource-related tasks, such as
CPU scheduling and I/O routing, in an unprotected manner. The
unprotected mode generally offers better performance, as it avoids
additional privilege switches between the untrusted OS and RTPM.
In the case of CPU scheduling, adopting a RTPM-guarded mode is
nearly impossible, as requiring RTPM validation for every sched-
uling operation would significantly degrade CPU performance.
However, the drawbacks of the unprotected mode are evident,

as it increases the attack surface. For instance, adopting an unpro-
tected mode for CPU scheduling allows adversaries to suspend
TEE instance execution through interrupts or configure CPU affin-
ity for TEE instances. Such interrupt-based controlled-channel

attacks [55, 83] can be combinedwithmicroarchitectural side chan-
nels to perform fine-grained secret exfiltration [12, 24, 62, 77, 84].
Recent TEE designs have tried to mitigate such attacks, by restrict-
ing how interrupts can be injected (SEV-SNP [3]) or handling some
interrupts by the TEE instances themselves (CURE [9]). Moreover,
for I/O events, software-based encryption for all I/O traffic be-
comes a necessary countermeasure that needs to be performed by
TEE instances themselves.
• RTPM-only mode. RTPM-only mode is considered the most secure
mode because all operations are performed within TCB. For highly
confidential operations, such as context switch, most TEEs adopt
the RTPM-only mode. The lack of sufficient protection in AMD
SEV and SEV-ES (using unprotected or RTPM-guarded modes) has
resulted in the corresponding leakage during context switch [32,
53, 56, 93]. On the other hand, placing all operations within RTPM
may significantly increase the TCB size and is not suitable for
complex tasks. For instance, in the design of AMD SEV/ES/SNP,
the primary RTPM is the security co-processor. However, it is
impractical to include page fault handling within this security co-
processor due to its limited capabilities. Delegating complex tasks
to RTPM in such scenarios would severely impact performance. In
cases like this, only software RTPMs, such as the trusted module in
Intel TDX or the security monitor in RISC-V Penglai, can efficiently
manage relatively complex tasks.
• RTPM-guarded mode. RTPM-guarded mode strikes a balance be-
tween the security advantages and the potential increase in TCB
size associated with the RTPM-only mode, as well as the resource
management capabilities offered by the unprotected mode. How-
ever, RTPM-guarded mode does have three drawbacks: Firstly, it
may still result in side-channel information leakage. For exam-
ple, TEEs that adopt the RTPM-guarded mode for page fault han-
dling, such as Intel SGX and AMD SEV, will suffer from page fault
controlled-channel attacks [32, 54, 65, 66, 67, 79, 85, 89, 93, 98]. By
manipulating PTE (e.g., clear the “present" bit), the adversary can
maliciously trigger page faults, which allow the adversary to ob-
serve the memory access patterns of the TEE instances at the page
granularity. Secondly, RTPM-guardedmode typically involves priv-
ilege switches between the untrusted OS and RTPM, which may
result in worse performance. For instance, in the case of RISC-V
Penglai, when updating the page table, the security monitor inside
RTPM needs to traverse all existing page tables before approving
the update request. This design choice has been identified as one
of the primary performance bottlenecks in Penglai. Thirdly, the
implementation of the RTPM-guarded mode may overlook certain
exceptional scenarios. For instance, in the case of SEV-ES where
RTPM-guarded mode is chosen for context switching, there is a
potential for TLB misuses when the untrusted host deliberately
manipulates CPU affinity in some corner cases [56].
• Instance-assisted mode. A few TEE designs allow instances to
directly assist or participate in certain resource management tasks.
The adoption of these designs is driven by two main reasons: (1)
the corresponding resources may be virtual, or (2) the TEE designs
aim to avoid involving untrusted hosts and preventing the leakage
of additional information. However, it is crucial to exercise caution
when adopting the Instance-assisted mode in TEE designs, as TEE
users may not always employ the correct strategies in compliance.

Cause Attack Surface Vendor Modes

CP
U

Context Switch Unprotected Regs [32] SEV Only Unprotected
Context Switch Unprotected Regs [93] SEV Only Unprotected
Context Switch TLB Misuse [56] SEV/ES RTPM-guarded
Context Switch Unauthenticated Encryption [53] SEV/ES RTPM-guarded
Instruction Emulation Debug Registers [3] SEV/ES/SNP Unprotected
Instruction Emulation Untrusted CPUID [3] SEV/ES/SNP Unprotected

ME
M

Memory Allocation Unprotected NPT [66] SEV/ES RTPM-guarded
Memory Allocation Unprotected NPT [65] SEV/ES RTPM-guarded
Memory Allocation Unprotected NPT [53] SEV/ES RTPM-guarded
Memory Allocation Unprotected NPT [67] SEV/ES RTPM-guarded

Table 1: Vulnerable design flaws.

Malicious TEE users may also attempt to exploit the instance-
assisted mode, resulting in adverse effects. For example, if the
entire address translation is performed inside the TEE, a malicious
TEE instance can access arbitrary memory pages. Additionally,
if interrupt handling is completely controlled by the TEE, a TEE
instance could refuse to relinquish CPU resources, thereby making
them unavailable to the host.
5.2 Security Implications: Known Design Flaws
To delve deeper into the security implications of various design
choices, we compile a comprehensive list of known attacks against
TEEs (Table 2 in Appendix A). There are numerous types of attacks
targeting TEE, including vulnerable system designs, microarchitec-
tural side channels, hardware flaws, speculative execution vulnera-
bilities, and other microarchitecture flaws. The majority of existing
attacks fall into the categories of side-channel attacks, which are
explicitly pointed out to be excluded in most commercial TEE’s
threat model [22, 44]. Our paper primarily focuses on the protec-
tion of TEE runtime and the security implications of how resources
are managed. Therefore, in this section, we specifically delve into
vulnerable system designs during TEE runtime. All other known
attacks with different types will be discussed in Section 6.

Attacks due tovulnerable system designs arise from TEE design
that fail to achieve their security goals in specific corner cases. Exist-
ing attacks often exploit inconsistent behavior in these corner cases
and compromising the overall security of the TEE. Notably, the un-
protected mode or RTPM-guarded mode are more prone to design
flaws, as the untrusted host can influence the corresponding tasks.
For example, in AMD SEV, the register values are not protected dur-
ing context switches [32, 93], which gives attacker the time window
to alter their values and breach the integrity of the VM instance.
Similarly, lack of enough protection (RTPM-guarded mode) towards
the nested page table (NPT) [65, 66, 67] and TLB [56] also leads to se-
curity breaches. All known attacks resulting from vulnerable design
are listed in Table 1. Attacks resulting frommicroarchitecture flaws,
such as insecure memory encryption engines [27, 94] or special
instructions [99] that can bypass TEE isolation, can also be consid-
ered as stemming from vulnerable TEE designs to some extent. This
is because these microarchitecture designs overlook corner cases
related to TEE. However, these attacks are primarily attributed to
flaws in the manufacturer’s TCB itself, rather than issues within
the system design and runtime management tasks. Therefore, we
categorize them separately as a distinct class of attacks.

Furthermore, it is noteworthy that the majority of known attacks
stemming from vulnerable system designs are primarily associated
with the SEV series. This can be attributed to SEV being an early
design for confidential VMs, which may have overlooked certain
corner cases during its development. This discovery is valuable for
our analysis of TEE designs, as it allows us to examine the evolution

of the three versions of SEV (SEV, SEV-ES, and SEV-SNP) and the
mitigations implemented to address existing attacks, shedding light
on the changes in TEE design.

5.3 Case Study: Evolution of Protection
Mechanisms in AMD SEV

In this section, we perform a detailed analysis of attacks on SEV
resulting from vulnerable system design and discuss the underlying
causes of these attacks.

5.3.1 Context Switch. In AMD SEV and SEV-ES, they adopt the
unprotected mode and RTPM-guarded mode respectively during
context switching. This means that during the context switch pro-
cess, all/some resources are managed by the untrusted hypervisor.
This has led to some attacks aimed at the context switch phase,
including Unencrypted register attacks, TLB poisoning attack, and
Unauthenticated encryption attack.
Unencrypted Register Attacks.Without SEV-ES and SEV-SNP
extensions, the VMEXIT operation in the baseline SEV [44] (unpro-
tected mode) acts very similar to traditional context switches in
virtualization. The hardware saves the VM’s register values directly
to the VM control block (VMCB) area and restores the host’s register
values from the host save area. Additionally, during the VMEXIT and
VMRUN operations, CPU updates the “ASID” register, which stores
an ID to differentiate between the host and different TEE instances.

The unencrypted VMCB and unprotected mode lead to various
attacks [32, 78, 93] that breach both the confidentiality and integrity
of the SEV-protected VM. For example, the SEVerESt attack [93]
showed that by continuously monitoring register values stored in
the VMCB area after the VMEXIT operation, an attacker can infer
the instructions being executed or fingerprint applications inside
the SEV VM. Similarly, Hetzelt et al. [32] showed that an attacker
could modify RIP register after VMEXIT to perform Return-oriented
programming (ROP) attacks. AMD fixed the register leakage vul-
nerability in SEV-ES and SEV-SNP by leveraging RTPM to protect
VM’s register values during context switch via encryption. Specifi-
cally, CPU microcodes in SEV-ES and SEV-SNP now encrypt VM’s
register values and store the ciphertext in an VM Save Area (VMSA).
TLB Poisoning Attacks. In SEV and SEV-ES, RTPM does not
actively perform TLB flush during VMEXIT or VMRUN operations.
This performance optimization aligns with the traditional KVM
design without TEE, where frequent TLB flushes can be avoided by
assigning a unique Address Space ID (ASID) to VM’s vCPUs, and
such ASID tag prohibits illegal access to dirty TLB entries.

However, for SEV-protected VMs, ASID needs to be consistent
for all vCPUs from the same VM as ASID is also identified by the
hardware for choosing the memory encryption key. Thus, SEV
leverages the untrusted host to enforce a TLB flush in some special
cases, such as context switching between vCPUs from the same
VM on the same logical CPU core. TLB Poisoning attack explored
this hypervisor-controlled TLB flush and showed that attackers
could breach TLB isolation between two vCPUs from a victim VM.
Specifically, the update of the microarchitectural states for this
attack pattern is explained in Figure 6. We refer to the two vCPUs
as “victim vCPU" and “attack vCPU". In the example presented, the
attack vCPU aims to directly utilize the TLB entry residues from

RegisterTLB

vic.VMEXIT()

atk.VMRUN()

atk.read()
TLB lookup

Vic's States

Atk's States

Inherited States

Illegal TLB Reuse

Possible Flow Path
Empty or Flushed

TLB Flush The same RIP

Figure 6: Sample diagram for TLB Poisoning attacks.
the victim vCPU. As shown in Figure 6, during the victim vCPU’s
VMEXIT, RTPM only clears the registers but does not flush TLB.
Later, during the attacker vCPU’s VMRUN, the attacker’s registers are
loaded. When the attacker subsequently performs a read operation
with a program counter value (stored in RIP register) that is used
by the victim vCPU before and remains cached in the TLB, the
TLB entry from the victim will be then directly inherited and used
due to them sharing the identical ASID. This pattern of operation
sequence, in turn, compromises the integrity of the victim VM.

AMD SEV-SNP mitigates the TLB Poisoning attacks by using
the RTPM-only mode during context switch. Specifically, the CPU
microcode now performs TLB flush checks and enforces TLB flush
when necessary by recording vCPU states inside a hardware-protected
region [4]. By eliminating the untrusted hypervisor’s control over
TLB resources, such attacks can be mitigated.
Unauthenticated Encryption Attacks. Unauthenticated Encryp-
tion Attacks [53] are carried out by tampering with the ASID during
context switch, leading to the use of incorrect memory encryption
keys. In AMD SEV and SEV-ES, an attacker can modify the ASID
stored in the VMCB after a VMEXIT, causing the subsequent VMRUN
to use the wrong key to decrypt accessed memory. Starting with
AMD SEV-SNP with RTPM-only mode, the hardware checks the
ownership of all accessed pages during VMRUN, effectivelymitigating
this type of attack.

5.3.2 Instruction Emulation. In all three versions of SEV, the un-
protected mode is employed for instruction emulation. This implies
that TEE instances directly rely on the emulation results supplied
by the hypervisor. Consequently, the hypervisor can exert control
over a TEE instance’s operation by supplying inaccurate register
values. To mitigate this risk, the TEE instance might implement in-
ternal software checks to filter out potentially erroneous emulations.
However, such defenses are neither enforced nor comprehensive.
Wrong CPUID InformationAttacks.One example is wrong CPUID
value [3]. Specifically, the hypervisor can provide an incorrect size
for the x86 Extended Save Area to the victim VM, causing the VM
to allocate a smaller memory region than expected. Subsequently,
a potential buffer overflow can be triggered when the VM instance
later executes XSAVE instructions. To address this issue, SEV-SNP
adds an additional CPUID filtering feature through the AMD Secure
Processor (AMD-SP). AMD-SP can roughly verify the CPUID result
to ensure that it falls within a reasonable range.

5.3.3 Memory Allocation. In both SEV and SEV-ES, a weak form
of RTPM-guarded mode is employed to safeguard memory alloca-
tion. Specifically, memory allocation is protected using memory

encryption keys provided by RTPM. For instance, if the untrusted
hypervisor maps a memory page from TEE instance A to an exist-
ing memory page of TEE instance B, instance A can gain access
to the memory page of instance B. However, since that memory
page is encrypted with a key unique to instance B, instance A will
not be able to retrieve the protected plaintext. Nevertheless, such
weak RTPM-guarded mode overlooks the mapping information of
memory allocation within a TEE instance, leading to a series of
attacks stemming from the unprotected nested page table (NPT).
Unprotected Nested Page Table Attacks. In AMD SEV and SEV-
ES, NPT is maintained by the untrusted hypervisor. The hypervisor
can remap a victim VM’s guest physical address to another system
physical address also owned by the same VM to change its con-
trol flow or break its data confidentiality. Hetzelt et al. [32] first
discussed the possibility of changing the VM’s execution flow by
redirecting the address translation. The similar method can also
be applied to data pages [65, 66, 67]. In the SEVered attack [66],
the attacker targets some network applications (e.g., webserver)
and remaps the guest physical address from a system physical ad-
dress that is supposed to contain network data to arbitrary system
physical addresses that contain the victim VM’s data.
6 DISCUSSION
6.1 Other Attacks
Besides the vulnerabilities stemming from TEE design flaws, there
are also various other types of attack against TEE (Table 2). While
some attacks are excluded from the TEE’s threat model (e.g., side-
channel attacks), current research indicates that these attacks have
emerged as genuine threats against TEE.
Side-channel attacks. Although side channel attacks have already
been shown to be a threat in the cloud environment [59, 100], the
strong assumption of a privileged attacker makes side-channel at-
tacks even more powerful in TEE environment for two reasons.
Firstly, the attacker has access to privileged interfaces, such as the
performance counter [30] and power consumption analyzer [57],
which can be used to gain more side channels for inference. Sec-
ondly, the attacker can gather more fine-grained information by
intentionally controlling global resources [12, 24, 62, 77, 84], such
as setting CPU affinity or using controlled-channel attacks.

Consequently, some traditional side-channel attacks bring addi-
tional threats against TEE designs. For example, CacheQuote [24]
challenged the security of remote attestation procedure used by
Intel SGX. Since the attestation supervisors (quoting enclaves) also
share the CPU resources with other untrusted threads, CacheQuote
showed it could utilize interrupt-controlled L1 cache side-channel
to successfully leak long-term secret used by the Extended Privacy
ID (EPID) protocol in the remote attestation procedure. Additionally,
some side-channel attacks utilize new side-channel information
to infer secret from within the TEE. One particular type of side-
channel attacks is ciphertext side-channel attacks against AMD
SEV, which monitors the ciphertext after memory encryption to
infer secret [52, 55]. Furthermore, performance counters, power
consumption interfaces, or CPU frequency could also be abused to
monitor TEE instances to leak sensitive data [30, 52, 57].
Controlled-channel attacks. Controlled-channel attacks are at-
tacks where the privileged attacker can control some resources

used by TEE instances, such as page tables or CPU scheduling, to
intentionally pause their execution, which provides additional in-
formation and proper time windows to conduct other attacks (e.g.,
side-channel attacks). Controlled-channel attacks are usually due
to choosing RTPM-guarded or unprotected mode.

Interrupt-based controlled-channel attacks. Most TEE designs
adopt a non-protection mode in CPU scheduling (§4.3), leaving
attackers the ability to force a TEE instance to exit and conduct
fine-grained attacks. For example, SGX-STEP [83] first showed that
an attacker could use APIC timer interrupts to single-step SGX
enclaves’ execution in instruction-level granularity. Similar attacks
were also studied in the AMD platform to monitor SEV VM’s states.
SEV-STEP [95] and CipherLeaks attack [55] used the timer interrupt
to step SEV VM’s execution inside an instruction page. Such time
interrupt-based controlled channel can be used combining with
other vulnerabilities (e.g., cache side-channel) to gain fine-grained
attack windows. To address these controlled-channel attacks, re-
cent academic research has been focusing on reducing the impact
of untrusted OS through software-hardware co-design [21, 70].

Page table-based controlled-channel attacks. As introduced in
§4.4.3, TEE designs that do not adopt the RTPM-only mode in page
table maintenance, such as Intel SGX and AMD SEV, will suffer
from page table-based controlled-channel attacks [32, 54, 65, 66, 67,
79, 85, 89, 93, 98]. By manipulating the page table entry (PTE) in the
page table (e.g., clear the “present" bit or “dirty" bit), the attacker can
intentionally raise page faults or observe the time points when the
TEE instance tries to access certainmemory pages. These exceptions
or observations immediately abort the execution of the TEE instance
to help the attacker intercept the TEE instance at desired execution
points or infer its behaviors. For example, by collecting the trace of
memory access at the page level, pigeonhole [79] showed it could
steal secret keys used by the SGX enclave when cryptography
implementations have a secret-dependent trace of page access.
Speculative Execution. Speculative execution attacks are highly
affected by CPU designs on different platforms. Many CPU ven-
dors opt to implement permission-related check in parallel with
speculatively execution for performance reason, which was first
exploited on Intel CPU by Meltdown [58] and Spectre [46] attacks
to bypass software-based permission isolation and use side-channel
to leak information. Subsequently, numerous research works have
delved into speculative execution-related attacks across various
microarchitectures, including L1 data cache [86, 88], Branch Target
Buffer (BTB) [3, 16], Return Stack Buffer (RSB) [47], Line Fill Buffer
(LFB) [35, 76, 82, 86, 87, 88], Single instruction multiple data (SIMD)
buffer [63], etc.. Due to the strong threat model of TEE, TEE designs
on different platforms have become a prime target for many specu-
lative attacks. It’s worth noting that speculative execution is more
of a general issue related to isolation between security domains,
rather than solely a design issue specific to TEE.
Other Microarchitectural Flaws. In addition to speculative exe-
cution attacks, there are other attacks stemming from microarchi-
tecture flaws. These attacks exploit hardware issues within SoC,
leading to TEE data to be accessed or manipulated. These attacks
violate the TEE’s threat model, where the SoC itself is considered
trusted. Thus, they are often unrelated to high-level TEE designs,
making them more challenging to detect. For instance, in the AMD

Zen1 architecture, it was discovered that the memory encryption
engine used insecure encryption modes and non-randomized tweak
functions [27, 94]. This allowed attackers to conduct ciphertext re-
play attacks. Another type of microarchitectural flaw is illegal data
forwarding, where attackers can gain unauthorized access to or
infer stale data remaining in TEE instances using side channels or
undefined registers. These attacks often result from incomplete CPU
designs that allow certain instructions [99] or hidden buffers [10, 37]
to bypass the isolation between the TEE and the untrusted world.
Hardware Flaws. Hardware flaws could also be leveraged to com-
promise TEEs. For example, the processor might behave abnor-
mally when voltage drops. Hence, when the adversary could ma-
nipulate the processor’s voltage via physical access or software
interfaces when running TEE instance, the security checks might
be bypassed, resulting in breach of confidentiality and even in-
tegrity [17, 45, 69, 73]. Another example of hardware flaws is
Rowhammer attacks, which are based on a known hardware flaw
in DRAM that triggers random bit flips, which could be abused in
TEE configurations to lock down the processor [40].

6.2 Limitations of TRAF
TRAF focuses on conducting a thorough and systematic disassembly
of TEE, analyzing their design choices and implications. However,
this high-level disassembly primarily serves to highlight the con-
siderations and trends of TEE designs, but it is insufficient to assess
the security of detailed implementations of a TEE design. The main
reason why TRAF does not choose to include a security analysis
from a microarchitectural perspective is that the substantial diver-
gence in the specific implementations of TEE designs increases the
challenge of performing a systematization of every implementa-
tion detail. Enumerating the implementation details for each task
can easily confuse new researchers and deviate from the intended
purpose of a SoK paper. In contrast, due to the unique hierarchical
model introduced by TEE (where a TEE instance is managed by
the hypervisor but must prevent information leakage), determining
how to securely manage resources under this distinctive threat
model presents a new challenge for server OSes with TEE require-
ment. With this SoK paper, we aim to reveal the appropriate design
choices in different runtime tasks with TEE context.

7 RELATEDWORK
Some existing work has also made significant efforts to summarize
or compare TEE designs from various perspectives, such as sys-
tematizing protection mechanisms, performance comparisons, and
conducting in-depth examinations of specific TEE designs.
Existing SoK works about TEE. Schneider et al. [75] also investi-
gated how hardware-based TEE designs offer security. Instead of
focusing on high-level design choices, such as how management
tasks are coordinated between the untrusted OS and RTPM, they pri-
marily delve into the implementation details of TEE designs. They
categorize and point out that TEE designs typically provide data iso-
lation through spatial, temporal, or hybrid approaches. Meanwhile,
they focus on a broader range of TEE designs, including not only
server-level TEEs but also embedded TEE designs. However, the
multitude of TEE implementation details and diverse working sce-
narios may lead to a scattered classification, making it challenging

for new researchers to grasp the focal points of TEE design. In con-
trast, our SoK begins with the challenges of resource management
in TEE, proposing a structured framework similar to knowledge
classification in OS textbooks. This framework can then be used to
analyze TEE considerations of efficiency, performance, and security
in various runtime tasks and their potential security threats.

Zhao et al. [101] provide detailed explanations of both software-
based and hardware-based TEEs. However, the distinction between
software and hardware-based TEEs leads to failures in establishing
a structured analytical framework, as we do in this paper. Paju et
al. [71] conduct a study involving more than 200 trusted applica-
tions built upon TEEs from both academia and industry side. They
cover various application scenarios and the design challenges en-
countered when developing trusted applications on different TEE
platforms, including TCB size, performance, and usability. Mofrad et
al. [61] and Akram et al. [1, 2] provide an overview and SoK of TEE
performance under various working scenarios, exploring different
performance bottlenecks of TEEs.
Studies of a specific TEE design. Some works focused on the
explanation of a specific TEE design [15, 22]. Costan et al. [22] serve
as a great educational document of Intel SGX and inspire many
following-up works about enclave-based TEEs. Cerdeira et al. [15]
study ARM TrustZone and existing secure systems built upon Trust-
Zone and Cortex-A processors. Lu et al. [60] and Dessouky et al. [26]
summarize academic TEE implementations on RISC-V.
Other summarizing works on TEEs.Munoz et al. [68] provide
a survey of attacks against TEEs, including software attacks, ar-
chitectural attacks, side-channel attacks, and microarchitectural
attacks. They also discuss the corresponding countermeasures.
Sabt et al. [74] define TEE and its general security properties.
Demigha et al. [25] enumerates four famous TEE designs, analyzes
their supported features, and discusses applicable working scenar-
ios. Jauernig et al. [41] delve into security properties, applications,
and future directions within the confidential cloud industry.

8 CONCLUSION
In this paper, we systematize the design choices and security im-
plications of hardware-based server-level TEEs. We propose the
TRAF framework as a means to deconstruct TEE designs, enabling
a deeper understanding of existing TEEs based on their overarching
design choices. Through our analysis of existing TEE designs, we
show a clear trend of adopting similar design choices by most TEEs.
In addition, by analyzing existing attacks on TEEs, we examined
the potential impacts of various TEE design choices and delved into
the reasons behind the emergence of these attacks.

ACKNOWLEDGEMENTS
Yinqian Zhang is supported in part by Key Special Project of the Na-
tional Key Research andDevelopment ProgramNo. 2023YFB4503902,
National Natural Science Foundation of China No. 62361166633 and
Shenzhen Science and Technology ProgramNo. JSGG2022083109560
3007. This work was also funded in part by the Air Force Office of
Scientific Research (AFOSR) under grants FA9550-22-1-0511.

A A LIST OF ATTACKS AGAINST TEES

Attack Surface Vendor TEE Type Authors Physical Confidentiality Integrity

Vu
ln
er
ab
le

De
si
gn

Unprotected Regs AMD SEV VM Hetzelt et al. [32] ✗ ✓ ✗
Unprotected Regs AMD SEV VM Werner et al. [93] ✗ ✓ ✓
Unprotected NPT SEV/SEV-ES VM Morbitzer et al. [65, 66] ✗ ✓ ✗
Unprotected NPT SEV/SEV-ES VM Li et al. [53] ✗ ✓ ✗
Unprotected NPT SEV/SEV-ES VM Morbitzer et al. [67] ✗ ✓ ✓
Unauthenticated Encryption SEV/SEV-ES VM Li et al. [53] ✗ ✓ ✗
TLB Misuse SEV/SEV-ES VM Li et al. [56] ✗ ✓ ✓
Debug Registers SEV/ES/SNP VM AMD et al. [3] ✗ ✓ ✓
Untrusted CPUID SEV/ES/SNP VM AMD et al. [3] ✗ ✓ ✗
Remote attestation & firmware AMD SEV VM Buhren et al. [14] ✗ ✓ ✗

Co
nt
ro
ll
ed

Si
de
-C
ha
nn
el

Page Table Intel SGX Enclave Xu et al. [98] ✗ ✓ ✗
Page Table Intel SGX Enclave Shinde et al. [79] ✗ ✓ ✗
Page Table Intel SGX Enclave Wang et al. [89] ✗ ✓ ✗
Page Table Intel SGX Enclave Van Bulck et al. [85] ✗ ✓ ✗
Page Table SEV/SEV-ES VM Werner et al. [93] ✗ ✓ ✗
Timer Interrupt Intel SGX Enclave Van Bulck et al. [83, 84] ✗ ✓ ✗
Timer Interrupt AMD SEV VM Li et al. [55] ✗ ✓ ✗
Timer Interrupt AMD SEV VM Van Wilke et al. [95] ✗ ✓ ✗

Mi
cr
o-
ar
ch
it
ec
tu
ra
l

Si
de
-C
ha
nn
el

L1/ L2 Cache Intel SGX Enclave Götzfried et al. [30] ✗ ✓ ✗
L1/ L2 Cache Intel SGX Enclave Moghimi et al. [62] ✗ ✓ ✗
L1/ L2 Cache Intel SGX Enclave Dall et al. [24] ✗ ✓ ✗
L1/ L2 Cache Intel SGX Enclave Brasser et al. [12] ✗ ✓ ✗
Last-level Cache Intel SGX Enclave Schwarz et al. [77] ✗ ✓ ✗
Memory Bus Intel SGX Enclave Lee et al. [48] ✓ ✓ ✗
Branch Predictor Intel SGX Enclave Lee et al. [50] ✗ ✓ ✗
Branch Predictor Intel SGX Enclave Evtyushkin et al. [28] ✗ ✓ ✗
Branch Predictor Intel SGX Enclave Huo et al. [34] ✗ ✓ ✗
PMC Intel SGX Enclave Götzfried et al. [30] ✗ ✓ ✗
PMC AMD SEV VM Li et al. [52] ✗ ✓ ✗
Power-Consumption Intel SGX Enclave Lipp et al. [57] ✗ ✓ ✗
Power-Consumption AMD SEV VM Wang et al. [90] ✗ ✓ ✗
Ciphertext AMD SEV VM Li et al. [52, 55] ✗ ✓ ✗

Sp
ec
ul
at
iv
e

Ex
ec
ut
io
n

L1 Cache Intel SGX Enclave Van Bulck et al. [81] ✗ ✓ ✗
BTB Intel SGX Enclave Chen et al. [16] ✗ ✓ ✗
RSB Intel SGX Enclave Koruyeh et al. [47] ✗ ✓ ✗
LFB Intel SGX Enclave Schwarz et al. [76] ✗ ✓ ✗
LFB Intel SGX Enclave Van Schaik et al. [86, 87, 88] ✗ ✓ ✗
LFB Intel SGX Enclave Intel [35] ✗ ✓ ✗
LFB Intel SGX Enclave Van Bulck et al. [82] ✗ ✓ ✗
SIMD Intel SGX Enclave Moghimi [63] ✗ ✓ ✗

`
ar
ch
it
ec
tu
re

Fl
aw

Weak Encryption SEV/SEV-ES VM Du et al. [27] ✗ ✓ ✗
Weak Encryption SEV/SEV-ES VM Wilke et al. [94] ✗ ✓ ✓
Weak Encryption & I/O SEV/SEV-ES VM Li et al. [54] ✗ ✓ ✗
INVD Instruction SEV-ES/SNP VM Zhang et al. [99] ✗ ✓ ✓
APIC Intel SGX Enclave Borrello et al. [10] ✗ ✓ ✗
MMIO stale data Intel SGX Enclave Intel [37] ✗ ✓ ✗

Ha
rd
wa
re

Fl
aw

Voltage glitching Intel SGX Enclave Qiu et al. [73] ✗ ✓ ✓
Voltage glitching Intel SGX Enclave Murdock et al. [69] ✗ ✓ ✓
Voltage glitching Intel SGX Enclave Kenjar et al. [45] ✗ ✓ ✓
Voltage glitching Intel SGX Enclave Chen et al. [17] ✓ ✓ ✓
Voltage glitching AMD SEV VM Buhren et al. [13] ✓ ✓ ✓
Rowhammer Intel SGX Enclave Jang et al. [40] ✗ ✓ ✗

Table 2: Existing attacks. Column “Physical” indicates whether the attacks require physical accesses. Column “Confidentiality”
and “Integrity” indicate the security properties the attacks aim to compromise.

REFERENCES
[1] Ayaz Akram, Venkatesh Akella, Sean Peisert, and Jason Lowe-

Power. 2022. SoK: Limitations of Confidential Computing
via TEEs for High-Performance Compute Systems. In 2022
IEEE International Symposium on Secure and Private Execution
Environment Design (SEED). IEEE, 121–132.

[2] Ayaz Akram, Anna Giannakou, Venkatesh Akella, Jason
Lowe-Power, and Sean Peisert. 2021. Performance analysis
of scientific computing workloads on general purpose TEEs.
In 2021 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). IEEE, 1066–1076.

[3] AMD. 2020. AMD SEV-SNP: Strengthening VM Isolation
with Integrity Protection and More. White paper (2020).

[4] AMD. 2021. Security Bulletin fo TLB Poisoning
Attacks on AMD Secure Encrypted Virtualization
(SEV). https://www.amd.com/en/corporate/product-
security/bulletin/amd-sb-1023.

[5] ARM. 2021. ARM CCA Security Model 1.0.

[6] ARM. 2022. Trustzone For Cortex-A. https://www.arm.com/
technologies/trustzone-for-cortex-a.

[7] Remzi H Arpaci-Dusseau and Andrea C Arpaci-Dusseau.
2018. Operating systems: Three easy pieces. Arpaci-Dusseau
Books LLC Boston.

[8] AWS. 2022. AWS Nitro Enclaves. https://aws.amazon.com/
ec2/nitro/nitro-enclaves/.

[9] Raad Bahmani, Ferdinand Brasser, Ghada Dessouky, Patrick
Jauernig, Matthias Klimmek, Ahmad-Reza Sadeghi, and Em-
manuel Stapf. 2021. CURE: A Security Architecture with
CUstomizable and Resilient Enclaves. In 30th USENIX Secu-
rity Symposium (USENIX Security 21).

[10] Pietro Borrello, Andreas Kogler, Martin Schwarzl, Moritz
Lipp, Daniel Gruss, and Michael Schwarz. 2022. {ÆPIC} Leak:
Architecturally Leaking Uninitialized Data from the Microar-
chitecture. In 31st USENIX Security Symposium (USENIX Se-
curity 22). 3917–3934.

[11] Justinien Bouron, Sebastien Chevalley, Baptiste Lepers, Willy
Zwaenepoel, Redha Gouicem, Julia Lawall, Gilles Muller, and

https://www.amd.com/en/corporate/product-security/bulletin/amd-sb-1023
https://www.amd.com/en/corporate/product-security/bulletin/amd-sb-1023
https://www.arm.com/technologies/trustzone-for-cortex-a
https://www.arm.com/technologies/trustzone-for-cortex-a
https://aws.amazon.com/ec2/nitro/nitro-enclaves/
https://aws.amazon.com/ec2/nitro/nitro-enclaves/

Julien Sopena. 2018. The Battle of the Schedulers:FreeBSD
ULE vs. Linux CFS. In 2018 USENIX Annual Technical Confer-
ence (USENIX ATC 18). 85–96.

[12] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari
Kostiainen, Srdjan Capkun, and Ahmad-Reza Sadeghi. 2017.
Software grand exposure:SGX cache attacks are practical. In
11th USENIX Workshop on Offensive Technologies (WOOT 17).

[13] Robert Buhren, Hans-Niklas Jacob, Thilo Krachenfels, and
Jean-Pierre Seifert. 2021. One Glitch to Rule Them All: Fault
Injection Attacks Against AMD’s Secure Encrypted Virtual-
ization. In Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security. 2875–2889.

[14] Robert Buhren, Christian Werling, and Jean-Pierre Seifert.
2019. Insecure until proven updated: analyzing AMD SEV’s
remote attestation. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security. 1087–
1099.

[15] David Cerdeira, Nuno Santos, Pedro Fonseca, and Sandro
Pinto. 2020. Sok: Understanding the prevailing security vul-
nerabilities in trustzone-assisted tee systems. In 2020 IEEE
Symposium on Security and Privacy (SP). IEEE, 1416–1432.

[16] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang,
Zhiqiang Lin, and Ten H Lai. 2019. Sgxpectre: Stealing intel
secrets from sgx enclaves via speculative execution. In 2019
IEEE European Symposium on Security and Privacy (EuroS&P).
IEEE, 142–157.

[17] Zitai Chen, Georgios Vasilakis, Kit Murdock, Edward Dean,
David Oswald, and Flavio D Garcia. 2021. VoltPillager:
Hardware-based fault injection attacks against Intel SGX
Enclaves using the SVID voltage scaling interface. In 30th
USENIX Security Symposium (USENIX Security 21). 699–716.

[18] Tobias Cloosters, Michael Rodler, and Lucas Davi. 2020.
TeeRex: Discovery and Exploitation of Memory Corruption
Vulnerabilities in SGX Enclaves. In 29th USENIX Security
Symposium (USENIX Security 20). USENIX Association, 841–
858. https://www.usenix.org/conference/usenixsecurity20/
presentation/cloosters

[19] Confidential Computing Consortium. 2020. Confidential
Computing: Hardware-Based Trusted Execution for Ap-
plications and Data. https://confidentialcomputing.io/wp-
content/uploads/sites/85/2020/06/ConfidentialComputing_
OSSNA2020.pdf.

[20] Confidential Computing Consortium. 2022. Confi-
dential Computing Consortium Members. https://
confidentialcomputing.io/members/.

[21] Scott Constable, Jo Van Bulck, Xiang Cheng, Yuan Xiao,
Cedric Xing, Ilya Alexandrovich, Taesoo Kim, Frank Piessens,
Mona Vij, andMark Silberstein. 2023. AEX-Notify: Thwarting
Precise Single-SteppingAttacks through Interrupt Awareness
for Intel SGX Enclaves. In 32nd USENIX Security Symposium
(USENIX Security 23). 4051–4068.

[22] Victor Costan and Srinivas Devadas. 2016. Intel SGX Ex-
plained. IACR Cryptol. ePrint Arch. 2016, 86 (2016), 1–118.

[23] Victor Costan, Ilia Lebedev, and Srinivas Devadas. 2016. Sanc-
tum: Minimal hardware extensions for strong software isola-
tion. In 25th USENIX Security Symposium (USENIX Security
16). 857–874.

[24] Fergus Dall, Gabrielle De Micheli, Thomas Eisenbarth, Daniel
Genkin, Nadia Heninger, Ahmad Moghimi, and Yuval Yarom.
2018. Cachequote: Efficiently recovering long-term secrets
of SGX EPID via cache attacks. (2018).

[25] Oualid Demigha and Ramzi Larguet. 2021. Hardware-based
solutions for trusted cloud computing. Computers & Security
103 (2021), 102117.

[26] Ghada Dessouky, Ahmad-Reza Sadeghi, and Emmanuel Stapf.
2020. Enclave computing on RISC-V: A brighter future for
security?. In Workshop on Secure RISC-V Architecture Design
(SECRISC-V’20).

[27] Zhao-Hui Du, Zhiwei Ying, Zhenke Ma, Yufei Mai, Phoebe
Wang, Jesse Liu, and Jesse Fang. 2017. Secure Encrypted
Virtualization is Unsecure. arXiv preprint arXiv:1712.05090
(2017).

[28] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh,
ECE, and Dmitry Ponomarev. 2018. Branchscope: A new
side-channel attack on directional branch predictor. ACM
SIGPLAN Notices 53, 2 (2018), 693–707.

[29] Erhu Feng, Xu Lu, Dong Du, Bicheng Yang, Xueqiang Jiang,
Yubin Xia, Binyu Zang, and Haibo Chen. 2021. Scalable
Memory Protection in the PENGLAI Enclave. In 15th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI 21). 275–294.

[30] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and
Tilo Müller. 2017. Cache attacks on Intel SGX. In Proceedings
of the 10th European Workshop on Systems Security. 1–6.

[31] Michael Gruhn and Tilo Müller. 2013. On the practicabil-
ity of cold boot attacks. In 2013 International Conference on
Availability, Reliability and Security. IEEE, 390–397.

[32] Felicitas Hetzelt and Robert Buhren. 2017. Security analysis
of encrypted virtual machines. In ACM SIGPLAN Notices.
ACM.

[33] Guerney DH Hunt, Ramachandra Pai, Michael V Le, Hani
Jamjoom, Sukadev Bhattiprolu, Rick Boivie, Laurent Dufour,
Brad Frey, Mohit Kapur, Kenneth A Goldman, et al. 2021.
Confidential computing for OpenPOWER. In Proceedings of
the Sixteenth European Conference on Computer Systems. 294–
310.

[34] Tianlin Huo, Xiaoni Meng, Wenhao Wang, Chunliang Hao,
Pei Zhao, Jian Zhai, and Mingshu Li. 2020. Bluethunder: A 2-
level directional predictor based side-channel attack against
SGX. IACR Transactions on Cryptographic Hardware and
Embedded Systems (2020), 321–347.

[35] Intel. 2019. Intel Transactional Synchroniza-
tion Extensions (Intel TSX) Asynchronous Abort.
https://www.intel.com/content/www/us/en/developer/
articles/technical/software-security-guidance/technical-
documentation/intel-tsx-asynchronous-abort.html.

[36] Intel. 2020. Intel Trust Domain Extensions Whitepaper.
https://software.intel.com/content/dam/develop/external/
us/en/documents/tdx-whitepaper-final9-17.pdf.

[37] Intel. 2022. Processor MMIO Stale Data Vulner-
abilities. https://www.intel.com/content/www/us/
en/developer/articles/technical/software-security-
guidance/technical-documentation/processor-mmio-
stale-data-vulnerabilities.html.

https://www.usenix.org/conference/usenixsecurity20/presentation/cloosters
https://www.usenix.org/conference/usenixsecurity20/presentation/cloosters
https://confidentialcomputing.io/wp-content/uploads/sites/85/2020/06/ConfidentialComputing_OSSNA2020.pdf
https://confidentialcomputing.io/wp-content/uploads/sites/85/2020/06/ConfidentialComputing_OSSNA2020.pdf
https://confidentialcomputing.io/wp-content/uploads/sites/85/2020/06/ConfidentialComputing_OSSNA2020.pdf
https://confidentialcomputing.io/members/
https://confidentialcomputing.io/members/
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/intel-tsx-asynchronous-abort.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/intel-tsx-asynchronous-abort.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/intel-tsx-asynchronous-abort.html
https://software.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-final9-17.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/tdx-whitepaper-final9-17.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/processor-mmio-stale-data-vulnerabilities.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/processor-mmio-stale-data-vulnerabilities.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/processor-mmio-stale-data-vulnerabilities.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/processor-mmio-stale-data-vulnerabilities.html

[38] Intel. 2022. Software Enabling for Intel® TDX in Support of
TEE-IO. White paper (2022).

[39] Intel. 2022. What Are PCIe 4.0 and 5.0? https://www.intel.
com/content/www/us/en/gaming/resources/what-is-pcie-
4-and-why-does-it-matter.html.

[40] Yeongjin Jang, Jaehyuk Lee, Sangho Lee, and Taesoo Kim.
2017. SGX-Bomb: Locking down the processor via Rowham-
mer attack. In Proceedings of the 2nd Workshop on System
Software for Trusted Execution. 1–6.

[41] Patrick Jauernig, Ahmad-Reza Sadeghi, and Emmanuel Stapf.
2020. Trusted execution environments: properties, applica-
tions, and challenges. IEEE Security & Privacy 18, 2 (2020),
56–60.

[42] Yuekai Jia, Shuang Liu, Wenhao Wang, Yu Chen, Zhengde
Zhai, Shoumeng Yan, and Zhengyu He. 2022. HyperEnclave:
An Open and Cross-platform Trusted Execution Environ-
ment. In 2022 USENIX Annual Technical Conference (USENIX
ATC 22). 437–454.

[43] David Kaplan. 2017. Protecting VM register state with SEV-
ES. White paper (2017).

[44] David Kaplan, Jeremy Powell, and Tom Woller. 2016. AMD
memory encryption. White paper (2016).

[45] Zijo Kenjar, Tommaso Frassetto, David Gens, Michael Franz,
and Ahmad-Reza Sadeghi. 2020. V0LTpwn: Attacking x86
Processor Integrity from Software. In 29th USENIX Security
Symposium (USENIX Security 20). 1445–1461.

[46] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel
Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan
Mangard, Thomas Prescher, et al. 2019. Spectre attacks: Ex-
ploiting speculative execution. In 2019 IEEE Symposium on
Security and Privacy (SP). IEEE, 1–19.

[47] Esmaeil Mohammadian Koruyeh, Khaled N Khasawneh,
Chengyu Song, and Nael Abu-Ghazaleh. 2018. Spectre re-
turns! speculation attacks using the return stack buffer. In
12th USENIX Workshop on Offensive Technologies (WOOT 18).

[48] Dayeol Lee, Dongha Jung, Ian T Fang, Chia-Che Tsai, and
Raluca Ada Popa. 2020. An Off-Chip Attack on Hardware
Enclaves via the Memory Bus. In 29th USENIX Security Sym-
posium (USENIX Security 20).

[49] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste
Asanović, and Dawn Song. 2020. Keystone: An open frame-
work for architecting trusted execution environments. In
Proceedings of the Fifteenth European Conference on Computer
Systems. 1–16.

[50] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hye-
soon Kim, and Marcus Peinado. 2017. Inferring fine-grained
control flow inside {SGX} enclaves with branch shadowing.
In 26th USENIX Security Symposium (USENIX Security 17).
557–574.

[51] Dingji Li, Zeyu Mi, Yubin Xia, Binyu Zang, Haibo Chen, and
Haibing Guan. 2021. TwinVisor: Hardware-isolated Confi-
dential Virtual Machines for ARM. In Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Principles. 638–
654.

[52] Mengyuan Li, Luca Wilke, Jan Wichelmann, Thomas Eisen-
barth, Radu Teodorescu, and Yinqian Zhang. 2022. A Sys-
tematic Look at Ciphertext Side Channels on AMD SEV-SNP.

In 2022 IEEE Symposium on Security and Privacy (SP). IEEE
Computer Society, 1541–1541.

[53] Mengyuan Li, Yinqian Zhang, and Zhiqiang Lin. 2020.
CROSSLINE: Breaking “Security-by-Crash” based Memory
Isolation in AMDSEV. arXiv preprint arXiv:2008.00146 (2020).

[54] Mengyuan Li, Yinqian Zhang, Zhiqiang Lin, and Yan Soli-
hin. 2019. Exploiting Unprotected I/O Operations in AMD’s
Secure Encrypted Virtualization. In 28th USENIX Security
Symposium. 1257–1272.

[55] Mengyuan Li, Yinqian Zhang, HuiboWang, Kang Li, and Yue-
qiang Cheng. 2021. CIPHERLEAKS: Breaking Constant-time
Cryptography on AMD SEV via the Ciphertext Side Channel.
In 30th USENIX Security Symposium (USENIX Security 21).
717–732.

[56] Mengyuan Li, Yinqian Zhang, Huibo Wang, Kang Li, and
Yueqiang Cheng. 2021. TLB Poisoning Attacks on AMD
Secure Encrypted Virtualization. InAnnual Computer Security
Applications Conference. 609–619.

[57] Moritz Lipp, Andreas Kogler, David Oswald, Michael
Schwarz, Catherine Easdon, Claudio Canella, and Daniel
Gruss. 2021. PLATYPUS: software-based power side-channel
attacks on x86. In 2021 IEEE Symposium on Security and Pri-
vacy (SP). IEEE, 355–371.

[58] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan Man-
gard, Paul Kocher, Daniel Genkin, et al. 2018. Meltdown:
Reading kernel memory from user space. In 27th USENIX
Security Symposium (USENIX Security 18). 973–990.

[59] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B
Lee. 2015. Last-level cache side-channel attacks are practical.
In 2015 IEEE symposium on security and privacy. IEEE, 605–
622.

[60] Tao Lu. 2021. A survey on risc-v security: Hardware and
architecture. arXiv preprint arXiv:2107.04175 (2021).

[61] Saeid Mofrad, Fengwei Zhang, Shiyong Lu, and Weidong Shi.
2018. A comparison study of Intel SGX and AMD memory
encryption technology. In Proceedings of the 7th International
Workshop on Hardware and Architectural Support for Security
and Privacy. 1–8.

[62] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth.
2017. Cachezoom: How SGX amplifies the power of cache at-
tacks. In International Conference on Cryptographic Hardware
and Embedded Systems. Springer, 69–90.

[63] Daniel Moghimi. 2023. Downfall: Exploiting Speculative Data
Gathering. In 32nd USENIX Security Symposium (USENIX
Security 23). 7179–7193.

[64] Hyungon Moon, Hojoon Lee, Ingoo Heo, Kihwan Kim, Yun-
heung Paek, and Brent Byunghoon Kang. 2015. Detecting
and preventing kernel rootkit attacks with bus snooping.
IEEE Transactions on Dependable and Secure Computing 14, 2
(2015), 145–157.

[65] Mathias Morbitzer, Manuel Huber, and Julian Horsch. 2019.
Extracting Secrets from Encrypted Virtual Machines. In 9th
ACM Conference on Data and Application Security and Privacy.
ACM.

[66] Mathias Morbitzer, Manuel Huber, Julian Horsch, and Sascha
Wessel. 2018. SEVered: Subverting AMD’s Virtual Machine

https://www.intel.com/content/www/us/en/gaming/resources/what-is-pcie-4-and-why-does-it-matter.html
https://www.intel.com/content/www/us/en/gaming/resources/what-is-pcie-4-and-why-does-it-matter.html
https://www.intel.com/content/www/us/en/gaming/resources/what-is-pcie-4-and-why-does-it-matter.html

Encryption. In 11th European Workshop on Systems Security.
ACM.

[67] Mathias Morbitzer, Sergej Proskurin, Martin Radev, Marko
Dorfhuber, and Erick Quintanar Salas. 2021. Severity: Code
injection attacks against encrypted virtual machines. In 2021
IEEE Security and Privacy Workshops (SPW). IEEE, 444–455.

[68] Antonio Muñoz, Ruben Ríos, Rodrigo Román, and Javier
López. 2023. A survey on the (in) security of trusted execution
environments. Computers & Security 129 (2023), 103180.

[69] Kit Murdock, David Oswald, Flavio D Garcia, Jo Van Bulck,
Daniel Gruss, and Frank Piessens. 2020. Plundervolt:
Software-based fault injection attacks against Intel SGX. In
2020 IEEE Symposium on Security and Privacy (SP). IEEE, 1466–
1482.

[70] Meni Orenbach, Andrew Baumann, and Mark Silberstein.
2020. Autarky: Closing controlled channels with self-paging
enclaves. In Proceedings of the Fifteenth European Conference
on Computer Systems. 1–16.

[71] Arttu Paju, Muhammad Owais Javed, Juha Nurmi, Juha Sav-
imäki, Brian McGillion, and Billy Bob Brumley. 2023. SoK: A
Systematic Review of TEE Usage for Developing Trusted Ap-
plications. In Proceedings of the 18th International Conference
on Availability, Reliability and Security. 1–15.

[72] Chad Perrin. 2008. The CIA triad. Dostopno na (2008).
[73] Pengfei Qiu, Dongsheng Wang, Yongqiang Lyu, and Gang

Qu. 2019. VoltJockey: Breaking SGX by software-controlled
voltage-induced hardware faults. In 2019 Asian Hardware
Oriented Security and Trust Symposium (AsianHOST). IEEE,
1–6.

[74] Mohamed Sabt, Mohammed Achemlal, and Abdelmadjid
Bouabdallah. 2015. Trusted execution environment: what it
is, and what it is not. In 2015 IEEE Trustcom/BigDataSE/ISPA,
Vol. 1. IEEE, 57–64.

[75] Moritz Schneider, Ramya Jayaram Masti, Shweta Shinde,
Srdjan Capkun, and Ronald Perez. 2022. SoK: Hardware-
supported Trusted Execution Environments. arXiv preprint
arXiv:2205.12742 (2022).

[76] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck,
Julian Stecklina, Thomas Prescher, and Daniel Gruss. 2019.
ZombieLoad: Cross-privilege-boundary data sampling. In
Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security. 753–768.

[77] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine
Maurice, and Stefan Mangard. 2017. Malware guard exten-
sion: Using SGX to conceal cache attacks. In International
Conference on Detection of Intrusions and Malware, and Vul-
nerability Assessment. Springer, 3–24.

[78] Hovav Shacham. 2007. The Geometry of Innocent Flesh on
the Bone: Return-into-libc Without Function Calls (on the
x86). In 14th ACM Conference on Computer and Communica-
tions Security. ACM.

[79] Shweta Shinde, Zheng Leong Chua, Viswesh Narayanan, and
Prateek Saxena. 2016. Preventing page faults from telling
your secrets. In Proceedings of the 11th ACM on Asia Confer-
ence on Computer and Communications Security. 317–328.

[80] Pramod Subramanyan, Rohit Sinha, Ilia Lebedev, Srinivas
Devadas, and Sanjit A Seshia. 2017. A formal foundation for

secure remote execution of enclaves. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications
Security. 2435–2450.

[81] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin,
Baris Kasikci, Frank Piessens, Mark Silberstein, Thomas F
Wenisch, Yuval Yarom, and Raoul Strackx. 2018. Foreshadow:
Extracting the Keys to the Intel SGX Kingdomwith Transient
Out-of-Order Execution. In 27th USENIX Security Symposium
(USENIX Security 18). 991–1008.

[82] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz
Lippi, Marina Minkin, Daniel Genkin, Yuval Yarom, Berk
Sunar, Daniel Gruss, and Frank Piessens. 2020. LVI: Hijacking
transient execution through microarchitectural load value
injection. In 2020 IEEE Symposium on Security and Privacy
(SP). IEEE, 54–72.

[83] Jo Van Bulck, Frank Piessens, and Raoul Strackx. 2017. SGX-
Step: A practical attack framework for precise enclave exe-
cution control. In Proceedings of the 2nd Workshop on System
Software for Trusted Execution. 1–6.

[84] Jo Van Bulck, Frank Piessens, and Raoul Strackx. 2018. Neme-
sis: Studying microarchitectural timing leaks in rudimentary
CPU interrupt logic. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security. 178–
195.

[85] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank
Piessens, and Raoul Strackx. 2017. Telling Your Secrets
without Page Faults: Stealthy Page Table-Based Attacks on
Enclaved Execution. In 26th USENIX Security Symposium
(USENIX Security 17). 1041–1056.

[86] Stephan van Schaik, Andrew Kwong, Daniel Genkin, and
Yuval Yarom. 2020. SGAxe: How SGX fails in practice.

[87] Stephan Van Schaik, Alyssa Milburn, Sebastian Österlund,
Pietro Frigo, Giorgi Maisuradze, Kaveh Razavi, Herbert Bos,
and Cristiano Giuffrida. 2019. RIDL: Rogue in-flight data load.
In 2019 IEEE Symposium on Security and Privacy (SP). IEEE,
88–105.

[88] Stephan van Schaik, Marina Minkin, Andrew Kwong, Daniel
Genkin, and Yuval Yarom. 2021. CacheOut: Leaking data on
Intel CPUs via cache evictions. In 2021 IEEE Symposium on
Security and Privacy (SP). IEEE, 339–354.

[89] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang,
XiaoFeng Wang, Vincent Bindschaedler, Haixu Tang, and
Carl A Gunter. 2017. Leaky cauldron on the dark land: Un-
derstanding memory side-channel hazards in SGX. In Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security. 2421–2434.

[90] Wubing Wang, Mengyuan Li, Yinqian Zhang, and Zhiqiang
Lin. 2023. PwrLeak: Exploiting Power Reporting Interface for
Side-Channel Attacks on AMD SEV. In International Confer-
ence on Detection of Intrusions and Malware, and Vulnerability
Assessment. Springer, 46–66.

[91] Nico Weichbrodt, Anil Kurmus, Peter Pietzuch, and Rüdiger
Kapitza. 2016. AsyncShock: Exploiting synchronisation bugs
in Intel SGX enclaves. In European Symposium on Research
in Computer Security. Springer, 440–457.

[92] Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel Genkin,
Baris Kasikci, Frank Piessens, Mark Silberstein, Raoul Strackx,

Thomas F Wenisch, and Yuval Yarom. 2018. Foreshadow-NG:
Breaking the virtual memory abstraction with transient out-
of-order execution. (2018).

[93] Jan Werner, Joshua Mason, Manos Antonakakis, Michalis
Polychronakis, and Fabian Monrose. 2019. The SEVerESt Of
Them All: Inference Attacks Against Secure Virtual Enclaves.
In ACM Asia Conference on Computer and Communications
Security. ACM, 73–85.

[94] Luca Wilke, Jan Wichelmann, Mathias Morbitzer, and
Thomas Eisenbarth. 2020. SEVurity: No Security Without
Integrity: Breaking Integrity-Free Memory Encryption with
Minimal Assumptions. In 2020 IEEE Symposium on Security
and Privacy (SP). IEEE, 1483–1496.

[95] Luca Wilke, Jan Wichelmann, Anja Rabich, and Thomas
Eisenbarth. 2023. SEV-Step: A Single-Stepping Framework
for AMD-SEV. arXiv preprint arXiv:2307.14757 (2023).

[96] L. Wilke, J. Wichelmann, F. Sieck, and T. Eisenbarth. 2021.
undeSErVed trust: Exploiting Permutation-Agnostic Remote
Attestation. In 2021 IEEE Security and Privacy Workshops
(SPW). IEEE Computer Society, Los Alamitos, CA, USA, 456–
466. https://doi.org/10.1109/SPW53761.2021.00064

[97] Yubin Xia, Zhichao Hua, Yang Yu, Jinyu Gu, Haibo Chen,
Binyu Zang, and Haibing Guan. 2021. Colony: A privileged
trusted execution environment with extensibility. IEEE Trans.
Comput. 71, 2 (2021), 479–492.

[98] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015.
Controlled-channel attacks: Deterministic side channels for
untrusted operating systems. In 2015 IEEE Symposium on
Security and Privacy. IEEE, 640–656.

[99] Ruiyi Zhang, CISPAHelmholtz Center, Lukas Gerlach, Daniel
Weber, Lorenz Hetterich, Youheng Lü, Andreas Kogler, and
Michael Schwarz. 2024. CacheWarp: Software-based Fault
Injection using Selective State Reset. (2024).

[100] Yinqian Zhang, Ari Juels, Michael K Reiter, and Thomas Ris-
tenpart. 2012. Cross-VM side channels and their use to extract
private keys. In Proceedings of the 2012 ACM SIGSAC confer-
ence on Computer and Communications Security. 305–316.

[101] Lianying Zhao, He Shuang, Shengjie Xu, Wei Huang,
Rongzhen Cui, Pushkar Bettadpur, and David Lie. 2019. Sok:
Hardware security support for trustworthy execution. arXiv
preprint arXiv:1910.04957 (2019).

[102] Shixuan Zhao, Mengyuan Li, Yinqian Zhang, and Zhiqiang
Lin. 2022. vSGX: Virtualizing SGX Enclaves on AMD SEV.
(2022).

https://doi.org/10.1109/SPW53761.2021.00064

	Abstract
	1 Introduction
	2 TEE in a Nutshell
	2.1 Scope of Investigation
	2.2 TEE Threat Model
	2.3 Generalized TEE Lifecycle

	3 Remote Attestation
	3.1 General Remote Attestation Procedures
	3.2 Chain of Trust
	3.3 Secure Measurement

	4 TEE Runtime Architectural Framework
	4.1 TRAF Overview
	4.2 High-level Design Choices
	4.3 CPU Virtualization
	4.4 Memory Management
	4.5 I/O Management

	5 Understanding TEE Designs Using TRAF
	5.1 Implications of Design Choices
	5.2 Security Implications: Known Design Flaws
	5.3 Case Study: Evolution of Protection Mechanisms in AMD SEV

	6 Discussion
	6.1 Other Attacks
	6.2 Limitations of TRAF

	7 Related Work
	8 Conclusion
	A A List of Attacks against TEEs

